

Physics Preliminary Course

2018 Course Outline

 \bigodot 2018, PEAK Physics and Chemistry

Contents

1	Information about the course	3
2	Class times	3
3	Staff in charge	3
4	Course details	4
5	Course schedule5.1Kinematics5.2Dynamics5.3Waves and Thermodynamics5.4Electricity and Magnetism	5 5 6 6
6	Homework	7
7	Assessment tasks	7

1 Information about the course

Year of delivery	2018	
Course name	Preliminary Physics	
Level of course	Year 11	
Assumed knowledge	None	
Contact hours per week	1 hour 45 minutes	
Number of weeks	44 weeks	
Commencement date	07/08/17	
	Kinematics (11 weeks)	
Same of a second stars stars	Dynamics (11 weeks)	
Summary of course structure	Waves and Thermodynamics (11 weeks)	
	Electricity and Magnetism (11 weeks)	

2 Class times

There are 7 classes currently running for the Preliminary Physics course:

Day	Time
	5:00 pm - 6:45 pm
Monday	6:45 pm - 8:30 pm
~ .	9:00 am - 10:45 am
Saturday	10:45 am - 12:30 pm
	9:00 am - 10:45 am
Sunday	10:45 am - 12:30 pm
	4:45 pm - 6:30 pm

3 Staff in charge

The course authority for the Preliminary Physics course is Miss Yen Nguyen. The tutors for the course are:

- Miss Yen Nguyen
- Mr Edbert Chung
- Mr Jason Sivieng

All staff members can be contacted via email.

4 Course details

The Preliminary Physics course aims to give students a basic understanding of the principles of physics that govern the world on both a microscopic and macroscopic level. Students studying this course will gain an understanding of scalar and vector quantities, Newton's laws of motion, classical mechanics, waves, thermodynamics and electromagnetism. There is a strong emphasis on problem solving and practical investigations in the Preliminary Physics course. The main topics covered in each module of the Preliminary Physics course are given below:

Module 1 Kinematics	 Motion in a Straight Line: Scalar and vector quantities, average and instantaneous velocity, relative velocity, equations of motion Motion on a Plane: Resolving vectors, vector addition, relative positions and motions of two objects on a plane 	
Module 2 Dynamics	 Forces: Newton's laws of motions, net forces, equilibrium Forces, Acceleration and Energy: Friction, objects on an inclined plane, law of conservation of mechanical energy, average power Momentum, Energy and Simple Systems: Law of conservation of momentum, impulse, elastic and inelastic collisions 	
Module 3 Waves and Thermodynamics	 Wave Properties: Mechanical and electromagnetic waves, transverse and longitudinal waves, properties of a wave Wave Behaviour: Reflection, refraction, diffraction, superposition, progressive and standing waves, resonance Sound Waves: Pitch, loudness, fundamental and harmonic frequencies, beats, the Doppler effect Ray Model of Light: Refractive index, total internal reflection, Snell's law, inverse square law Thermodynamics: Temperature, thermal equilibrium, specific heat capacity, energy transfer, latent heat 	
Module 4 Electricity and Magnetism	 Electrostatics: Electric fields, interactions between charged objects, moving charges in an electric field Electric Circuits: Ohm's law, power, series and parallel circuits, Kirchoff's current law, Kirchoff's voltage law Magnetism: Ferromagnetic materials, magnetic fields 	

5 Course schedule

5.1 Kinematics

Lesson	Topic
1	Motion on a Straight Line
2	Motion on a Straight Line
3	Motion on a Straight Line
4	Motion on a Straight Line
5	Motion on a Plane
6	Motion on a Plane
7	Motion on a Plane
8	Motion on a Plane
9	Motion on a Plane
10	Kinematics Module Exam
11	Kinematics Module Exam Feedback

5.2 Dynamics

Lesson	Topic
1	Forces
2	Forces
3	Forces, Acceleration, Energy
4	Forces, Acceleration, Energy
5	Forces, Acceleration, Energy
6	Forces, Acceleration, Energy
7	Momentum, Energy and Simple Systems
8	Momentum, Energy and Simple Systems
9	Momentum, Energy and Simple Systems
10	Dynamics Module Exam
11	Dynamics Module Exam Feedback

5.3 Waves and Thermodynamics

Lesson	Topic
1	Wave Properties
2	Wave Behaviour
3	Wave Behaviour
4	Sound Waves
5	Sound Waves
6	Ray Model of Light
7	Ray Model of Light
8	Thermodynamics
9	Thermodynamics
10	Electricity and Magnetism Module Exam
11	Electricity and Magnetism Module Exam Feedback

5.4 Electricity and Magnetism

Lesson	Topic
1	Electrostatics
2	Electrostatics
3	Electric Circuits
4	Electric Circuits
5	Electric Circuits
6	Electric Circuits
7	Magnetism
8	Magnetism
9	Magnetism
10	Electricity and Magnetism Module Exam
11	Electricity and Magnetism Module Exam Feedback

6 Homework

A homework sheet will be provided to students at the end of each lesson. The homework problems have been divided into three separate sections:

- Foundation: This section contains problems that are designed to test very basic concepts.
- Development: This section is the longest and it contains exam-style questions where students are required to apply their understanding of basic concepts. The problems in this section have marks allocated to them so that students can receive more specific feedback on the quality of their answers. Students who can comfortably solve the problems in this section can expect to do well in the assessment tasks.
- Extension: This section is optional as it contains problems that can be extremely difficult. These problems are mainly intended for high achieving students who are aiming to obtain a state rank and/or are studying the Physics Olympiad.

7 Assessment tasks

Students will be assessed with assignments, quizzes, module exams and a final exam. These components will contain problems consistent with those you are likely to face in your school assessments. The purpose of these assessments is to ensure students revise their content regularly and to help develop their critical thinking abilities. Students are expected to achieve a mark of at least 50% in all assessment tasks.

Assessment Task	Duration	Weighting
Module 1 Exam	1 hour 30 minutes	15%
Module 2 Exam	1 hour 30 minutes	15%
Module 3 Exam	1 hour 30 minutes	15%
Module 4 Exam	1 hour 30 minutes	15%
Final Exam	2 hours	30%
Assignments and Quizzes	_	10%

Details of each assessment task are given below: