

SCIENCE Years 7 – 10 Hieu Le

www.peaktuition.com.au Mobile: 0404 754 848 Office: 0497 952 888

Level 1, 223 Canley Vale Rd, Canley Heights

Name: Class:

PHYSICS & CHEMISTRY Years 11 – 12 Duyen Nguyen

www.peakhsc.com.au Mobile: 0432 637 032 Office: 0452 558 316

Level 1, 262 Canley Vale Rd, Canley Heights

\	T 4 1 4:	1 - O1:1.	ative Chemistry
MOOHIE Z.	Introduction	to Uniantity	arive Canemistry

Topic 2.2: The Mole Concept

1. Consider the following reaction:

$$2A + 3B \rightarrow 2C + 4D$$

How many moles of B is required to completely react with 2.50 moles of A?

- (a) 2.50 mol
- (b) 3.00 mol
- (c) 3.75 mol
- (d) 7.50 mol
- 2. For the same reaction in Question 1, if 5.00 moles of A is mixed with 6.00 moles of B, how many moles of C is produced?
 - (a) 4.00 mol
 - (b) 5.00 mol
 - (c) 6.00 mol
 - (d) 12.0 mol
- 3. Butanol burns in oxygen according to the following equation:

$$C_4H_9OH_{(1)} + 6O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(g)}$$

How many moles of carbon dioxide would form if exactly 12 moles of oxygen was consumed in this reaction?

- (a) 2 mol
- (b) 4 mol
- (c) 8 mol
- (d) 10 mol

4. Carbon monoxide can be oxidised according to the following equation:

$$2 CO_{(g)} + O_{2(g)} \rightarrow 2 CO_{2(g)}$$

How many moles of oxygen is required to combust 28 g of carbon monoxide?

- (a) 0.40 mol
- (b) 0.50 mol
- (c) 0.60 mol
- (d) 0.70 mol
- 5. Consider the following reaction:

$$2 \operatorname{BiCl}_{3(aq)} + 3 \operatorname{H}_2S_{(g)} \to \operatorname{Bi}_2S_{3(s)} + 6 \operatorname{HCl}_{(aq)}$$

What volume of hydrogen sulfide gas at 25° C and 100 kPa is required to convert 0.600 moles of bismuth chloride into bismuth sulfide?

- (a) 7.40 L
- (b) 14.7 L
- (c) 20.2 L
- (d) 22.3 L
- 6. Aluminum can be extracted from aluminum oxide through the following electrolytic process:

$$2 \, Al_2O_{3(s)} \rightarrow 4 \, Al_{(s)} + 3 \, O_{2(g)}$$

What mass of aluminum oxide needs to be electroly sed to produce 500.0 L of oxygen at 0° C and 100 kPa?

- (a) 1020 g
- (b) 1327 g
- (c) 1497 g
- (d) 2275 g
- 7. What volume of carbon dioxide gas is produced at 25° C and 100 kPa when 200.0 g of calcium carbonate is thermally decomposed?
 - (a) 22.20 L
 - (b) 24.50 L
 - (c) 44.42 L
 - (d) 49.54 L
- 8. What is the mass of calcium oxide produced when 25 g of calcium carbonate is thermally decomposed?
 - (a) 10 g
 - (b) 14 g
 - (c) 16 g
 - (d) 25 g

9.	(a)	Write a chemical equation for the reaction between magnesium and hydrochloric acid.	1
	(b)	Calculate the mass of hydrochloric acid that is required to completely dissolve $6.00~\mathrm{g}$ of magnesium.	2
	*	18.0 g ★	
10.	(a)	Write a chemical equation for the complete combustion of methane (CH_4) gas.	1
	(b)	Calculate the mass AND volume of oxygen gas at 0°C and 100 kPa required to completely combust 10.0 g of methane.	3

★ 39.9 g, 28.3 L ★

11.	(a)	Write a chemical equation for the reaction between aluminum and oxygen gas.	
	(b)	Calculate the mass of the salt produced when 0.89 g of aluminum is reacted with excess oxygen gas.	
	_	17 g 📥	
	*	1.7 g ★	
12.	Dui	ring a class demonstration, Mr Geerling mixed 1.50 g of sodium with excess sulfuric acid.	
	(a)	Write a chemical equation for the reaction between sodium and sulfuric acid.	
	(b)	Calculate the mass of the salt produced from this reaction.	
	(c)	Calculate the volume of the gas produced from this reaction at 25°C and 100 kPa.	

13.	(a)	Write a chemical equation for the reaction between nitric acid and barium hydroxide.				
	(b)	Calculate the mass of the salt produced when $1.60~{\rm g}$ of nitric acid is mixed with excess barium hydroxide.				
	*	3.32 g ★				
		Calcium hypochlorite $(Ca(OCl)_2)$ is often used to disinfect swimming pools. It can be prepared from calcium carbonate with the following series of reactions: $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$ $CaO_{(s)} + H_2O_{(l)} \rightarrow Ca(OH)_{2(aq)}$				
14.		m calcium carbonate with the following series of reactions: ${\rm CaCO_{3(s)} \to CaO_{(s)} + CO_{2(g)}}$ ${\rm CaO_{(s)} + H_2O_{(l)} \to Ca(OH)_{2(aq)}}$				
14.	from	m calcium carbonate with the following series of reactions: ${\rm CaCO}_{3(s)} \to {\rm CaO}_{(s)} + {\rm CO}_{2(g)}$				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				
14.	from	m calcium carbonate with the following series of reactions: $ \begin{aligned} \mathrm{CaCO_{3(s)}} &\to \mathrm{CaO_{(s)}} + \mathrm{CO_{2(g)}} \\ \mathrm{CaO_{(s)}} &+ \mathrm{H_2O_{(l)}} \to \mathrm{Ca(OH)_{2(aq)}} \\ 2\mathrm{Ca(OH)_{2(aq)}} &+ 2\mathrm{Cl_{2(g)}} \to \mathrm{Ca(OCl)_{2(aq)}} + \mathrm{CaCl_{2(aq)}} + 2\mathrm{H_2O_{(l)}} \end{aligned}$ deulate the mass of calcium hypochlorite that can be produced from 2.50 kg of calcium				

	(a)	Write a chemical equation for the reaction between zinc and sulfuric acid.	1
	(b)	Calculate the volume of the gas produced at $25^{\circ}\mathrm{C}$ and 100 kPa when 1.50 g of zinc is reacted with 1.70 g of sulfuric acid.	3
	*	0.430 L ★	
16.	(a)	Write a chemical equation for the reaction between potassium and oxygen.	1
	(b)	Calculate the mass of the salt produced when $5.00~{\rm g}$ of potassium is reacted with $0.70~{\rm L}$ of oxygen gas at $0^{\circ}{\rm C}$ and $100~{\rm kPa}$.	3
	(b)	Calculate the mass of the salt produced when $5.00~{\rm g}$ of potassium is reacted with $0.70~{\rm L}$ of oxygen gas at $0^{\circ}{\rm C}$ and $100~{\rm kPa}$.	3
	(b)	Calculate the mass of the salt produced when $5.00~{\rm g}$ of potassium is reacted with $0.70~{\rm L}$ of oxygen gas at $0^{\circ}{\rm C}$ and $100~{\rm kPa}$.	3
	(b)	Calculate the mass of the salt produced when 5.00 g of potassium is reacted with 0.70 L of oxygen gas at 0°C and 100 kPa.	3
	(b)	Calculate the mass of the salt produced when 5.00 g of potassium is reacted with 0.70 L of oxygen gas at 0°C and 100 kPa.	3
	(b)	Calculate the mass of the salt produced when 5.00 g of potassium is reacted with 0.70 L of oxygen gas at 0°C and 100 kPa.	3
	(b)	Calculate the mass of the salt produced when 5.00 g of potassium is reacted with 0.70 L of oxygen gas at 0°C and 100 kPa.	3
	(b)	Calculate the mass of the salt produced when 5.00 g of potassium is reacted with 0.70 L of oxygen gas at 0°C and 100 kPa.	3
	(b)	Calculate the mass of the salt produced when 5.00 g of potassium is reacted with 0.70 L of oxygen gas at 0°C and 100 kPa.	3

(α)	Write a chemical equation for the reaction that occurs.
′h)	Calculate the mass of the salt produced from this reaction.
.0)	Calculate the mass of the sait produced from this reaction.
(c)	Calculate the volume of the gas produced from this reaction at 25°C and 100 kPa.
(1\	
d)	Calculate the mass of the leftover reactant at the end of the reaction.

